
Micromouse. Od zera do sera

Micromouse. From scratch to cheese

1

Embedded meetup, Gdańsk 7.05.2024



About competition

2

➢ About competition
❖ About me, why MicroMouse?
❖ My approach to project development
❖ Post-mortem thoughts and questions
❖ Demonstration and Q&A



Micromouse competition

- Started around 50 years ago
- Fully autonomous mobile robot
- Size of the maze is 16x16 cells
- Each cell is 18cm wide
- Starting position is one corner
- Target position is in the middle
- Maze is unknown

Robot might do multiple runs. 
Final score = (time of first run)*0,1 + (time of fastest 
run)

3
Photo credit: author’s own resources



- Multi-disciplinary problems
- mechanics
- electronics
- software

- Complex tasks to solve on different 
application level in the same time

- mapping
- motion planning
- motion profiling
- wall sensing
- other

What it means

4

High entry-level

Photo credit: author’s own resources



About me, why MicroMouse?

5

❖ About competition
➢ About me, why MicroMouse?

❖ My approach to project development
❖ Post-mortem thoughts and questions
❖ Demonstration and Q&A



About me

Engineer at heart. Willing to construct 
autonomous robots that will change the 
world… for better

6



Why micromouse?

seems challenging, 
but achievable

dunno

7

learn!



Project timeline

8

4.10.2020

FW commit

19.01.2024

start SCRUM

26.12.2019

Initial commit

28.03.2023

HW bring up

23.02.2024

first run on sim

20.04.2024

competition



My approach to project development

9

❖ About competition
❖ About me, why MicroMouse?

➢ My approach to project development
❖ Post-mortem thoughts and questions
❖ Demonstration and Q&A



TDD

Kitchen conversation
ucgosu course
<1min test cycle

10

Photo credit: https://www.kaizenko.com/what-is-test-driven-development-tdd/



Scale of the project (LOC)

11

17061 6997



38,97%
Written lines of code are deployed to target

12



Continuous 
Integration

13

Rule: Everything done up to now must 
work all the time

Continuous integration 
(not: continuous delivery)

photo credit: https://www.davefarley.net/?p=314



14

Regression
Unit Tests failure



15

Top most priority: fix it now.



16

UT repaired



No hardware!

… minimize it as much as possible

17
Photo credit: author’s own resources



18
Photo credit: author’s own resources



Physical 
modelling

First order system - step 
response on straight line

19



Split code into 
units

the only way to go fast is to go well

20
Photo by Karolina Grabowska from Pexels: 
https://www.pexels.com/photo/photograph-of-wooden-building-blo
cks-near-a-kid-7269687/

https://www.pexels.com/photo/photograph-of-wooden-building-blocks-near-a-kid-7269687/
https://www.pexels.com/photo/photograph-of-wooden-building-blocks-near-a-kid-7269687/


Code architecture

21



22



Physical modelling

23

current state

next point

linear velocity

angular velocity

linear PID

angular PID

left motor PWM

right motor PWM

left motor 
encoder

right motor 
encoder



Post-mortem thoughts and questions

24

❖ About competition
❖ About me, why MicroMouse?
❖ My approach to project development

➢ Post-mortem thoughts and questions
❖ Demonstration and Q&A



Unit tests - Holy 
Grail or necessary 
evil?

25

For me: the only way to produce a high quality code 
is by creating it in TDD framework.



Case study - Unit Tests are not always right

26

FW

UT

SIM

UT

system tests: failure

Root cause: FW and FW’s UTs 
had the same bugs



Simulation decision retrospective

27

Development 
with sim?

Custom

Reuse open 
source

HW only

well documented

I know what’s inside
fully customizable

bugs
always needs improving

high entry-level knowledge
C++
needs custom plugins

start rapidly on hw die rapidly on hw
CI testing nearly impossible
difficult debugging



Focus

28
Photo credit: 
https://pixabay.com/illustrations/rubiks-cube-cube-rubik-puzzle-toy-3347244/

Photo credit: author’s own resources



Photo credit: Amazon

SRP - single 
responsibility 
principle

A function (or module) should do exactly 
one thing - and it should do it properly.
Applies not only for code

29

https://www.amazon.pl/Clean-Architecture-Craftsmans-Software-Structure/dp/0134494164/ref=asc_df_0134494164/?tag=plshogostdde-21&linkCode=df0&hvadid=504384189023&hvpos=&hvnetw=g&hvrand=1723001052483940854&hvpone=&hvptwo=&hvqmt=&hvdev=c&hvdvcmdl=&hvlocint=&hvlocphy=1011476&hvtargid=pla-423658477418&psc=1&mcid=07d7e73e82af32098f91e285927f2ef4


30



Another principle 
from uncle Bob

More or less: do not mess up with logic 
layers.

31

High level function should not interfere with low 
level stuff.
It can call lower layer functions and pass some 
objects though.



32

If it works - 
don’t touch it!

First implementation 
changed “just 

because”



33



over one week lost
Due to stupid decision which was at this time arbitrary

34



When to switch from sim to hw?

35

Infrared (IR) distance sensors - case study



Simulation is fine, 
but one must try the 
code on HW

36

Know your limits
-> And simulate it



37



IR distance sensors have different measurement when angle changes
38



When to switch from sim to hw?

39

Switch fully?

Or maybe partially? 

Maybe develop hw and sim simultaneously?



Keep environment 
and tools 

“portable”
VS

40

Make environment 
dependent on 

specific 
machine/OS



Development environment v1

some OS

docker

41

simulation - building 
and running with GUI

docker

another OS

firmware - 
compilation and 

running tests: unit 
and simulator-based

GUI - x server

TCP



Development environment v2

some OS

docker

42

simulation - building 
and running with GUI

docker

firmware - 
compilation and 

running tests: unit 
and simulator-based

GUI - x server

TCP



Development environment v3

some OS

43

simulation - building 
and running with GUI

firmware - 
compilation and 

running tests: unit 
and simulator-based

TCP



Keep environment 
and tools 

“portable”
VS

44

Make environment 
dependent on 

specific 
machine/OS



● It’s your first “static code analysis” tool
● Case study (warnings are important!): “abs” vs “fabs”

Compiler is your friend

45



Recap ● TDD - write high quality code
● CI server - be sure it’s always working
● SRP - modularize the code
● Learn - from others and books

46

● Enable HW earlier to know its limitations
● Don’t change approach without good justification

● Simulation vs HW
● Dockerization of development tools



Demonstration and Q&A

47

❖ About competition
❖ About me, why MicroMouse?
❖ My approach to project development
❖ Post-mortem thoughts and questions

➢ Demonstration and Q&A



DEMO

48


