
Micromouse. Od zera do sera

Micromouse. From scratch to cheese
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Embedded meetup, Gdańsk 7.05.2024
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Micromouse competition

- Started around 50 years ago
- Fully autonomous mobile robot
- Size of the maze is 16x16 cells
- Each cell is 18cm wide
- Starting position is one corner
- Target position is in the middle
- Maze is unknown

Robot might do multiple runs. 
Final score = (time of first run)*0,1 + (time of fastest 
run)
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Photo credit: author’s own resources



- Multi-disciplinary problems
- mechanics
- electronics
- software

- Complex tasks to solve on different 
application level in the same time

- mapping
- motion planning
- motion profiling
- wall sensing
- other

What it means
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High entry-level

Photo credit: author’s own resources
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About me

Engineer at heart. Willing to construct 
autonomous robots that will change the 
world… for better
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Why micromouse?

seems challenging, 
but achievable

dunno
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learn!



Project timeline
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4.10.2020

FW commit

19.01.2024

start SCRUM

26.12.2019

Initial commit

28.03.2023

HW bring up

23.02.2024

first run on sim

20.04.2024

competition



My approach to project development
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TDD

Kitchen conversation
ucgosu course
<1min test cycle
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Photo credit: https://www.kaizenko.com/what-is-test-driven-development-tdd/



Scale of the project (LOC)
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17061 6997



38,97%
Written lines of code are deployed to target
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Continuous 
Integration
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Rule: Everything done up to now must 
work all the time

Continuous integration 
(not: continuous delivery)

photo credit: https://www.davefarley.net/?p=314
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Regression
Unit Tests failure
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Top most priority: fix it now.
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UT repaired



No hardware!

… minimize it as much as possible
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Physical 
modelling

First order system - step 
response on straight line
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Split code into 
units

the only way to go fast is to go well
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Photo by Karolina Grabowska from Pexels: 
https://www.pexels.com/photo/photograph-of-wooden-building-blo
cks-near-a-kid-7269687/

https://www.pexels.com/photo/photograph-of-wooden-building-blocks-near-a-kid-7269687/
https://www.pexels.com/photo/photograph-of-wooden-building-blocks-near-a-kid-7269687/


Code architecture
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Physical modelling
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current state

next point

linear velocity

angular velocity

linear PID

angular PID

left motor PWM

right motor PWM

left motor 
encoder

right motor 
encoder



Post-mortem thoughts and questions
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Unit tests - Holy 
Grail or necessary 
evil?
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For me: the only way to produce a high quality code 
is by creating it in TDD framework.



Case study - Unit Tests are not always right
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FW

UT

SIM

UT

system tests: failure

Root cause: FW and FW’s UTs 
had the same bugs



Simulation decision retrospective
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Development 
with sim?

Custom

Reuse open 
source

HW only

well documented

I know what’s inside
fully customizable

bugs
always needs improving

high entry-level knowledge
C++
needs custom plugins

start rapidly on hw die rapidly on hw
CI testing nearly impossible
difficult debugging



Focus
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Photo credit: 
https://pixabay.com/illustrations/rubiks-cube-cube-rubik-puzzle-toy-3347244/

Photo credit: author’s own resources



Photo credit: Amazon

SRP - single 
responsibility 
principle

A function (or module) should do exactly 
one thing - and it should do it properly.
Applies not only for code
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https://www.amazon.pl/Clean-Architecture-Craftsmans-Software-Structure/dp/0134494164/ref=asc_df_0134494164/?tag=plshogostdde-21&linkCode=df0&hvadid=504384189023&hvpos=&hvnetw=g&hvrand=1723001052483940854&hvpone=&hvptwo=&hvqmt=&hvdev=c&hvdvcmdl=&hvlocint=&hvlocphy=1011476&hvtargid=pla-423658477418&psc=1&mcid=07d7e73e82af32098f91e285927f2ef4
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Another principle 
from uncle Bob

More or less: do not mess up with logic 
layers.
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High level function should not interfere with low 
level stuff.
It can call lower layer functions and pass some 
objects though.
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If it works - 
don’t touch it!

First implementation 
changed “just 

because”
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over one week lost
Due to stupid decision which was at this time arbitrary
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When to switch from sim to hw?
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Infrared (IR) distance sensors - case study



Simulation is fine, 
but one must try the 
code on HW
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Know your limits
-> And simulate it
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IR distance sensors have different measurement when angle changes
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When to switch from sim to hw?
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Switch fully?

Or maybe partially? 

Maybe develop hw and sim simultaneously?



Keep environment 
and tools 

“portable”
VS
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Make environment 
dependent on 

specific 
machine/OS



Development environment v1

some OS

docker
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simulation - building 
and running with GUI

docker

another OS

firmware - 
compilation and 

running tests: unit 
and simulator-based

GUI - x server

TCP



Development environment v2

some OS

docker
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simulation - building 
and running with GUI

docker

firmware - 
compilation and 

running tests: unit 
and simulator-based

GUI - x server

TCP



Development environment v3

some OS
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simulation - building 
and running with GUI

firmware - 
compilation and 

running tests: unit 
and simulator-based

TCP



Keep environment 
and tools 

“portable”
VS
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Make environment 
dependent on 

specific 
machine/OS



● It’s your first “static code analysis” tool
● Case study (warnings are important!): “abs” vs “fabs”

Compiler is your friend
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Recap ● TDD - write high quality code
● CI server - be sure it’s always working
● SRP - modularize the code
● Learn - from others and books
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● Enable HW earlier to know its limitations
● Don’t change approach without good justification

● Simulation vs HW
● Dockerization of development tools



Demonstration and Q&A
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DEMO
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